This work demonstrates the possibility of modulating the spin state of the FeII sites and subsequently the magnetic properties of a [2×2] FeII grid-like complex by variation of the degree of deprotonation of the hydrazine-based N-H sites of the ligand in the complex. Evidence has been provided, both in the solid state and in solution, towards understanding the strong influence of the spin-crossover process on the pKas of the grid ligands, which exhibit a unique deprotonation pattern. The present study provides a demonstration of the effect of spin state switching of a chemical property, here on ligand pKa in a metallosupramolecular grid.
Sébastien Dhers, Abhishake Mondal, David Aguilà, Juan Ramírez, Sergi Vela, Pierre Dechambenoit, Mathieu Rouzières, Jonathan R. Nitschke, Rodolphe Clérac & Jean-Marie Lehn. Spin State Chemistry: Modulation of Ligand pKa by Spin State Switching in a [2×2] Iron(II) Grid-Type Complex J. Am. Chem. Soc. 2018, 140 (26), pp 8218–8227 DOI : 10.1021/jacs.8b03735